扫了一圈,任秀华盯着靠窗那个角落,穿着白色夏季校服短袖的男生清隽的脸上有?些倦怠,撑着脑袋正在?桌子上闭目养神,她背着手,站在?讲台上,点了名。
“周聿也,你上来?做这道题。”
难得被?点一次名,班里一静,周聿也也没有?什么意外的表情,懒懒地睁开眼,目光先漫不经心地上挑,看了几眼黑板上写好的题目,顿了一下,然?后从座位上起身:“行。”
在?快上讲台时,下面忽然?又有?人先把手举了起来?。
众人齐刷刷将目光投过去,就?看到?陈叙从座位上站了起来?,平静地说了一声:“老师,我也想试试。”
任秀华点点头:“可以?,你也上来?。”
两位大?神难得一起亮相?,还?是解这种?很有?难度的题,对于热爱数学甚至痴迷的人来?说,莫不过明星来?开演唱会一般精彩,讲台下的学生们精神皆是一振,炯炯有?神地盯着台上的人。
喻时坐在?座位上,听到?前?面的人不由得嘀咕了一声:“这是在?神仙打架啊,你猜,谁先解出?来??”
“周聿也吧,上次他不是赢了陈叙了吗?”
“那可未必,我觉得陈叙也很厉害,我每次不会的题问他,他都知道,而且给我讲的很清楚。”
喻时倒是对他俩谁先解出?来?没有?太多关注,看完题后,她就?一直在?低头试图解出?这道题。
这是一道解析几何题,是在?问一个正n多边形内接了一个半径为1的圆,设L是由连接多边形顶点的所有?线段的不同?长?度构成的集合,那么L中所有?元素的平方和是多少?
首先,这是要求出?一个具体的数值,那么用勾股定理或者三角学来?解是最明确的。
喻时首先在?纸上举出?了几个具体的例子。
比如当n=3,4,5,6…有?了具体的数值,对应的所有?元素的平方和也可以?由此得出?。但?同?时也对应了一些特殊情况,比如n=2。
接下来?就?是相?对应的猜想和验证。
喻时抬起头,看了一眼黑板。
两人也写到?了这里,甚至比她更快一点。
但?在?计算长?度平方和的时候,两人所用的方法就?出?现了分叉。
陈叙选择了一种?更为靠谱但?相?对于比较耗力的算法,而周聿也则采用了向量几何法。
两种?不同?的方法,为底下的学生打开了不同?的新思路,陆陆续续有?一些低声的讨论声响起。
而讲台上站的两人,不知怎的,也越写越快,莫名有?了考试的紧迫感,将人的心也吊了起来?,紧紧跟着两人写的每一步。安静的讲台上,中间好像有?涌动的暗流,无声地将两人卷入其中。
一时间,教室里不停响起粉笔敲击黑板的闷声,还?有?很低声的嘈杂讨论声。
直到?讲台下的喻时长?吁一口?气,一瞬间像卸下千斤重担般,如释负重地抬起了头,同?时她一也松开了刚刚一直疾书的笔,手心有?些濡湿,但?她已经全然?顾不上,按捺住扑通不停的心脏,用那双澄黑的瞳仁像水洗了一般透亮有?神地盯着黑板上的答案。
与此同?时,讲台上笔挺立着的两人也终于停下了手中的粉笔。
周聿也把脚微微往后放了一下,偏眼看了旁边陈叙最后写出?来?的答案,毫不遮掩地笑了一下,朝他抬了抬下巴。
“可以?啊,能跟上我的速度。”
这道题他知道陈叙能做出?来?,但?能赶上和他同?时做完,还?是有?点水平的。
放在?一中,也是个不可多得的好料子,不比那些眼睛长?在?头顶上的个个自诩天才的人弱。
陈叙也没有?谦让,朝周聿也弯了弯唇:“彼此彼此。”
周聿也这次还?算正儿八经地看了一眼陈叙,嘴角勾着笑说了一声:“现在?我倒是想看看,你能走多远了,希望到?了最后,也能看见你。“
说完后,两人对视了一眼。
陈叙这次没有?立刻回复,停顿了一秒后,语气重了起来?:“会的。”
此刻两人已经完全没有?刚才互相?比拼做题的紧张压迫感,周身充满了松弛。
乍一看,倒像多年未见的知己好友。